Antenna selection guide

Contents

Overview

Type

Index

Main

Menu

	10 kHz	1.5	10		100 MHz		1 1.3
<u> </u>							
3	SHF	Anteni	las				
	Туре			Designatio	n		
	R&S®A	C 008		Microwave Di	rectional Anter	ina	

SHF Directional Antenna System

SHF Directional Antenna System

SHF Directional Antenna System

SHF Directional Antenna System

SHF Directional Antenna

SHF/EHF Directional Antenna

Dual-Polarized Reflector Antenna

GHz

10 18 26.5

40

Page

112

114

116

118

120

122

124

126

Contents **Overview** R&S®AC 090

R&S®AC 120

R&S®AC 180

R&S®AC 300

R&S®AC 308R2

R&S®AC 308R3

R&S[®]AC 025DP

Туре Index

3

Microwave Directional Antenna R&S®AC 008

1 GHz to 18 GHz/0.85 GHz to 26.5 GHz Manually steerable directional antenna for the detection of RF signals and for fieldstrength measurements

Features

- Wide frequency range
- Reception of linear, dual-linear and circular polarization (depending on feed used)
- Collapsible for easy transport
- For compensating cable loss, active feeds can be used

Brief description

The R&S[®] AC 008 is a manually steerable directional antenna for mobile applications.

The reflector has a diameter of 0.9 m and – depending on the feed used – receives signals in the range 1 GHz to 18 GHz or 0.85 GHz to 26.5 GHz.

The R&S[®]AC 008 is used for detecting radio signals and for field-strength measurements. It can also be directed toward geostationary satellites.

The use of different feeds allows reception of any type of polarization. For transportation, the directional antenna (including the feed) can be collapsed to a handy size.

3

Chapter Overview

Type Index

±360° --6° to +44° SMA female >500 000 h

-30 °C to +50 °C

approx. 0.9 m

approx. 12 kg

GHz

40

10 18

111

26.5

1.5

10 kHz

Frequency range	1 GHz to 18 GHz (models .02/.04)	Positioning range
	0.85 GHz to 26.5 GHz (model .05)	Azimuth
Polarization		Elevation
With feed R&S®HL024A	1 dual-linear (model .02)	Connector
With feed R&S®HL050	linear (model .05)	MTBF
With feed R&S®HL024S	2 linear/circular (model .04)	Operating
Input impedance	50 Ω	temperature range
VSWR	≤2.5	Reflector diameter
Gain	15 dBi to 40 dBi (1 GHz to 18 GHz)	Weight
Half-power beamwidth	20° to 1.5° (1 GHz to 18 GHz)	

10

Ordering information

Microwave Directiona	l Antenna		Recommended extras		
1 GHz to 18 GHz, dual-li	near		Tripod	R&S®AC 008-Z	0671.5117.02
polarization	R&S®AC 008	0671.5017.02	Control Unit for		
1 GHz to 18 GHz, linear/	1		R&S®HL024S2	R&S®GB016	4056.7006.02
circular polarization	R&S®AC 008	0671.5017.04	Control Cable, 10 m	R&S®GB016Z1	4056.7270.02
0.85 GHz to 26.5 GHz,			Microwave Cable, 5 m	R&S®AC008W2	0751.6931.04
linear polarization	R&S®AC 008	0671.5017.05	Microwave Cable, 10 m	R&S®AC008W2	0751.6931.05
			Telescone	B&S®AC 008E1	0751 6919 02

Typical gain (blue) and half-power beamwidth (red) of R&S®AC 008 with feed R&S®HL 050

R&S®AC 008 collapsible for transportation

Chap Over	ter view
Type Index	ĸ
Mair Men	u u

3

3

Chapter Overview

Type Index

Main Menu

SHF Directional Antenna System R&S®AC 090

1 GHz to 18 GHz/0.85 GHz to 26.5 GHz Extremely broadband directional antenna for radiomonitoring, steerable in azimuth and elevation

Features

- Extremely broadband without change of feed
- 0.9 m reflector diameter
- Adjustable in azimuth and elevation
- System control via PC user interface (WindowsNT/2000/XP)
- Use of the R&S®HL 050S7 allows the preamplifier to be bypassed at high field strengths (also applies to the R&S®HL 024S7/S8)

Brief description

The R&S[®] AC 090 is a stationary directional antenna that can be adjusted in azimuth and elevation.

The reflector has a diameter of 0.9 m and – depending on the feed used – receives signals in the range 1 GHz to 18 GHz or 0.85 GHz to 26.5 GHz. The frequency range can be extended to up to 40 GHz by flange-connected options.

The R&S[®] AC 090 is used for radiomonitoring tasks, for instance.

GHz 10 18

40

26.5

Specifications

1.5

10

10 kHz

Frequency range		Connector	RPC3.5 female
Depending on feed	1 GHz to 18 GHz	MTBF	>8000 h
	0.85 GHz to 26.5 GHz	Operating	
Gain	15 dBi to 40 dBi (1 GHz to 18 GHz)	temperature range	-30 °C to +50 °C
Half-power beamwidth	19° to 1.1° (1 GHz to 18 GHz)	Max. wind speed	180 km/h (without ice deposit)
Min. field strength	see figure below	Reflector diameter	approx. 0.9 m
Range of rotation		Weight	approx. 165 kg
Azimuth	±180°		
Elevation	-5° to +95°		

Ordering information

SHF Directional Antenn	- Directional Antenna		
System	R&S®AC 090	4051.4509.00	
Feed options (see also pa	ages 128 to 141):		
Log-Periodic Antenna, 0.	85 GHz to 26.5 GHz		
Basic model	R&S®HL050S1	4065.0100.02	
With preamplifier	R&S®HL050S7	4064.6040.02	
Crossed Log-Periodic An	tenna, 1 GHz to 18 GHz		
Basic model	R&S®HL024S1	4055.1256.02	
With passive			
polarization network	R&S®HL024S2	4052.1003.02	
With preamplifier,			
1 RF output	R&S®HL024S7	4042.8505.02	

With preamplifier,		
2 RF outputs	R&S®HL024S8	4042.7509.02
With active		
polarization network	R&S®HL024S9	4047.6252.02
Recommended extras		
Reflector Antenna, 18 GHz	to 26.5 GHz,	
29 dBi to 33 dBi	R&S®AC 308R2	4051.6001.02
Reflector Antenna, 26.5 GH	Hz to 40 GHz,	
33 dBi to 36 dBi	R&S®AC 308R3	4051.6253.02

1 1.3

Typical gain

Typical minimum receive field strength with R&S[®] HL 024S9 (for a receiver with F = 15 dB, $\Delta f = 1 \text{ MHz}$)

3

Type Index

3

Chapter Overview

Type Index

Main Menu

SHF Directional Antenna System R&S®AC 120

1 GHz to 18 GHz/0.85 GHz to 26.5 GHz Extremely broadband directional antenna for radiomonitoring, steerable in azimuth and elevation

Features

- Extremely broadband without change of feed
- 1.2 m reflector diameter
- Adjustable in azimuth and elevation
- System control via PC user interface (WindowsNT/2000/XP)
- Use of the R&S®HL 050S7 allows the preamplifier to be bypassed at high field strengths (also applies to the R&S®HL 024S7/S8)

Brief description

The R&S[®] AC 120 is a stationary directional antenna that can be adjusted in azimuth and elevation.

The reflector has a diameter of 1.2 m and – depending on the feed used – receives signals in the range 1 GHz to 18 GHz or 0.85 GHz to 26.5 GHz. The frequency range can be extended to up to 40 GHz by flange-connected options.

The R&S[®] AC 120 is used for radiomonitoring tasks, for instance.

40

26.5

GHz

1 1.3

Specifications

1.5

10

10 kHz

Frequency range		Connector	RPC3.5 female
Depending on feed	1 GHz to 18 GHz	MTBF	>8000 h
	1 GHz to 26.5 GHz	Operating	
Gain	15 dBi to 42 dBi (1 GHz to 18 GHz)	temperature range	-30 °C to +50 °C
Half-power beamwidth	17° to 0.9° (1 GHz to 18 GHz)	Max. wind speed	180 km/h (without ice deposit)
Min. field strength	see figure below	Reflector diameter	approx. 1.2 m
Range of rotation		Weight	approx. 170 kg
Azimuth	±180°		
Elevation	-5° to +95°		

Ordering information

SHF	Directional Antenna	irectional Antenna		
Syst	em	R&S®AC 120	4051.5005.00	
Feed	options (see also pag	ges 128 to 141):		
Log-	Periodic Antenna, 0.8	5 GHz to 26.5 GHz		
Ba	sic model	R&S®HL050S1	4065.0100.02	
Wi	th preamplifier	R&S®HL050S7	4064.6040.02	
Cros	sed Log-Periodic Ante	enna, 1 GHz to 18 GHz		
Ba	sic model	R&S®HL024S1	4055.1256.02	
Wi	th passive			
ро	larization network	R&S®HL024S2	4052.1003.02	
Wi	th preamplifier,			
1 F	RF output	R&S®HL024S7	4042.8505.02	

With preamplifier,		
2 RF outputs	R&S®HL024S8	4042.7509.02
With active		
polarization network	R&S®HL024S9	4047.6252.02
Recommended extras		
Reflector Antenna, 18 GHz	to 26.5 GHz,	
29 dBi to 33 dBi	R&S®AC 308R2	4051.6001.02
Reflector Antenna, 26.5 Gl	Hz to 40 GHz,	
33 dBi to 36 dBi	R&S®AC 308R3	4051.6253.02

Typical minimum receive field strength with R&S[®] HL 024S9 (for a receiver with F = 15 dB, $\Delta f = 1 \text{ MHz}$)

3

SHF Directional Antenna System R&S®AC 180

1 GHz to 18 GHz/0.85 GHz to 26.5 GHz Extremely broadband directional antenna for radiomonitoring, steerable in azimuth and elevation

Features

of feed

1.8 m reflector diameter
 Enhanced antenna gain

(Windows NT/2000/XP)

R&S®HL024S7/S8)

Extremely broadband without change

Adjustable in azimuth and elevation

System control via PC user interface

 Use of the R&S[®]HL050S7 allows the preamplifier to be bypassed at high

field strengths (also applies to the

R&S® AC 180 with optional R&S® AC 308R2/R3

Brief description

The R&S[®] AC 180 is a stationary directional antenna that can be adjusted in azimuth and elevation.

The reflector has a diameter of 1.8 m and – depending on the feed used – receives signals in the range 1 GHz to 18 GHz or 0.85 GHz to 26.5 GHz. The frequency range can be extended to up to 40 GHz by flange-connected options.

The R&S[®] AC 180 is used for radiomonitoring tasks, for instance.

Chapter Overview

3

Type Index

10 18 26.5

40

GHz

1 1.3

Specifications

1.5

10

10 kHz

-			
Frequency range		Connector	RPC3.5 female
Depending on feed	1 GHz to 18 GHz	MTBF	>8000 h
	0.85 GHz to 26.5 GHz	Operating	
Gain	20 dBi to 46 dBi (1 GHz to 18 GHz)	temperature range	-30 °C to +55 °C
Half-power beamwidth	12° to 0.7° (1 GHz to 18 GHz)	Max. wind speed	160 km/h (without ice deposit)
Min. field strength	see figure below	Reflector diameter	approx. 1.8 m
Range of rotation		Weight	approx. 420 kg
Azimuth	±180°		
Elevation	-5° to +95°		

Ordering information

SHF Directional Antenna							
System	R&S®AC 180	4051.5505.00					
Feed options (see also pa	iges 128 to 141):						
Log-Periodic Antenna, 0.	85 GHz to 26.5 GHz						
Basic model	R&S®HL050S1	4065.0100.02					
With preamplifier	R&S®HL050S7	4064.6040.02					
Crossed Log-Periodic Ant	enna, 1 GHz to 18 GHz						
Basic model	R&S®HL024S1	4055.1256.02					
With passive							
polarization network	R&S®HL024S2	4052.1003.02					
With preamplifier,							
1 RF output	R&S®HL024S7	4042.8505.02					

With preamplifier,						
2 RF outputs	R&S®HL024S8	4042.7509.02				
With active						
polarization network	R&S®HL024S9	4047.6252.02				
Recommended extras						
Reflector Antenna, 18 GH	lz to 26.5 GHz,					
29 dBi to 33 dBi	R&S®AC 308R2	4051.6001.02				
Reflector Antenna, 26.5 GHz to 40 GHz,						
33 dBi to 36 dBi	R&S®AC 308R3	4051.6253.02				

Typical gain

Typical minimum receive field strength with R&S[®]HL024S9 (for a receiver with F = 15 dB, $\Delta f = 1 \text{ MHz}$)

3

3

Chapter Overview

Type Index

Main Menu

SHF Directional Antenna System R&S®AC 300

1 GHz to 18 GHz/0.85 GHz to 26.5 GHz Extremely broadband directional antenna for radiomonitoring, steerable in azimuth and elevation

Features

- Extremely broadband without change of feed
- 3 m reflector diameter
- Enhanced antenna gain
- Adjustable in azimuth and elevation
- System control via PC user interface (WindowsNT/2000/XP)
- Use of the R&S®HL 050S7 allows the preamplifier to be bypassed at high field strengths (also applies to the R&S®HL 024S7/S8)

Brief description

The R&S[®] AC 300 is a stationary directional antenna that can be adjusted in azimuth and elevation.

The reflector has a diameter of 3 m and – depending on the feed used – receives signals in the range 1 GHz to 18 GHz or 0.85 GHz to 26.5 GHz. The frequency range can be extended to up to 40 GHz by flange-connected options.

The R&S[®] AC 300 is used for radiomonitoring tasks, for instance.

40

26.5

GHz

1

1 1.3

Specifications

1.5

10

10 kHz

Frequency range		Connector	RPC3.5 female
Depending on feed	1 GHz to 18 GHz	MTBF	>8000 h
	0.85 GHz to 26.5 GHz	Operating	
Gain	26 dBi to 51 dBi	temperature range	-30 °C to +55 °C
	22 dBi to 51 dBi	Max. wind speed	160 km/h (without ice deposit)
Half-power beamwidth	6° to 0.35°	Reflector diameter	approx. 3 m
Min. field strength	see figure below	Weight	approx. 1460 kg
Range of rotation			
Azimuth	±180°		
Elevation	-5° to +95°		

Ordering information

SHF Directional Antenna							
System	R&S®AC 300	4051.6546.00					
Feed options (see also j	pages 128 to 141):						
Log-Periodic Antenna, ().85 GHz to 26.5 GHz						
Basic model	R&S®HL050S1	4065.0100.02					
With preamplifier	R&S®HL050S7	4064.6040.02					
Crossed Log-Periodic A	ntenna, 1 GHz to 18 GHz						
Basic model	R&S®HL024S1	4055.1256.02					
With passive							
polarization network	R&S®HL024S2	4052.1003.02					
With preamplifier,							
1 RF output	R&S®HL024S7	4042.8505.02					

Nith preamplifier,							
2 RF outputs	R&S®HL024S8	4042.7509.02					
With active							
polarization network	R&S®HL024S9	4047.6252.02					
Recommended extras	Recommended extras						
Reflector Antenna, 18 G	Hz to 26.5 GHz,						
29 dBi to 33 dBi	R&S®AC 308R2	4051.6001.02					
leflector Antenna, 26.5 GHz to 40 GHz,							
33 dBi to 36 dBi	R&S®AC 308R3	4051.6253.02					

Typical gain

Typical minimum receive field strength with R&S[®] HL 024S9 (for a receiver with F = 15 dB, $\Delta f = 1 \text{ MHz}$)

3

Chapter

Index

3

Chapter Overview

Type Index

Main Menu

SHF Directional Antenna R&S®AC 308R2

18 GHz to 26.5 GHz Broadband directional antenna for radiomonitoring

Features

- Fast and simple installation
- Rugged design
- Integrated in operational concept of SHF Directional Antenna Systems R&S[®]AC 090 to R&S[®]AC 300

Brief description

The SHF Directional Antenna R&S®AC 308R2 for the frequency range 18 GHz to 26.5 GHz has a reflector diameter of 25 cm.

The antenna is supplied with an integrated preamplifier (model .02) or without preamplifier (model .04).

The R&S®AC 308R2 is especially suitable for extending the frequency range of the SHF Directional Antenna Systems R&S®AC 090 to R&S®AC 300 to which it can be flange-connected.

The R&S[®] AC 308R2 with optional tripod, adapter and power supply can also be used independently.

40

3

Chapter Overview

Type Index

Main

Menu

GHz

Specifications

1.5

10

10 kHz

Antenna		Noise figure	<3 dB
Frequency range	18 GHz to 26.5 GHz	Power consumption	+15 V/0.2 A
Polarization	H, V or 45°, depending on installation	MTBF	
Input impedance	50 Ω	Model .04 (passive)	>250 000 h
VSWR	<2	Model .02 (active)	>100 000 h
Gain	29 dBi to 33 dBi	Operating	
Half-power beamwidth	4.5° to 3°	temperature range	-20 °C to +50 °C
Reflector diameter	250 mm	Dimensions	
Connector	K female	(diameter \times length)	approx. 380 mm $ imes$ 300 mm
Preamplifier (typical valu	les)	Weight	approx. 2.5 kg
Gain	28 ±2 dB		
1 dB compression point	≥+8 dBm		

Ordering information

SHF Directional Antenna			Recommended extras		
With preamplifier,			Power Supply	R&S®IN 308	4059.6752.02
18 GHz to 26.5 GHz	R&S®AC 308R2	4051.6001.02	Transit Case	R&S®AC 308Z	4059.6500.02
Without preamplifier,			Adapter for		
18 GHz to 26.5 GHz	R&S®AC 308R2	4051.6001.04	Wooden Tripod R&S®	HZ-1 R&S®KA 308R2	4057.8606.00
			Wooden Tripod	R&S®HZ-1	0837.2310.02

Typical gain

Typical radiation pattern at 26.5 GHz

3

Chapter Overview

Type Index

Main Menu

SHF/EHF Directional Antenna R&S®AC 308R3

26.5 GHz to 40 GHz Broadband directional antenna for radiomonitoring

<image>

Features

- Fast and simple installation
- Rugged design
- Integrated in operational concept of SHF Directional Antenna Systems R&S[®]AC 090 to R&S[®]AC 300

Brief description

The SHF Directional Antenna R&S®AC 308R3 for the frequency range 26.5 GHz to 40 GHz has a reflector diameter of 25 cm.

The antenna is supplied with integrated preamplifier (model .02) or without preamplifier (model .04).

The antenna is especially suitable for extending the frequency range of the SHF Directional Antenna Systems R&S® AC 090 to R&S® AC 300 to which it can be flange-connected.

The R&S[®] AC 308R3 with optional tripod, adapter and power supply can also be used independently.

1 1.3

40

26.5

GHz

Specifications

1.5

10

10 kHz

Antenna		Noise figure	<4 dB
Frequency range	26.5 GHz to 40 GHz	Power consumption	+15 V/0.2 A
Polarization	H, V or 45°, depending on installation	MTBF	
Input impedance	50 Ω	Model .04 (passive)	>250 000 h
VSWR	<2	Model .02 (active)	>100 000 h
Gain	33 dBi to 36 dBi	Operating	
Half-power beamwidth	3° to 2°	temperature range	-20 °C to +50 °C
Reflector diameter	250 mm	Dimensions	
Connector	K female	(diameter \times length)	approx. 380 mm × 300 mm
Preamplifier (typical valu	les)	Weight	approx. 2.5 kg
Gain	28 ±2 dB		
1 dB compression point	≥+8 dBm		

Ordering information

				D 1.1.4		
SHF/EHF Directional Antenna				Recommended extras		
	With preamplifier,			Power Supply	R&S®IN 308	4059.6752.02
	26.5 GHz to 40 GHz	R&S®AC 308R3	4051.6253.02	Transit Case	R&S®AC 308Z	4059.6500.02
	Without preamplifier,			Adapter for		
	26.5 GHz to 40 GHz	R&S®AC 308R3	4051.6253.04	Wooden Tripod R&S®HZ-1	R&S®KA 308R2	4057.8606.00
				Wooden Tripod	R&S®HZ-1	0837.2310.03

Typical gain

Typical radiation pattern at 40 GHz

Chapter Overview Type

Dual-Polarized Reflector Antenna R&S®AC 025DP

18 GHz to 40 GHz

3

Chapter Overview

Type Index

Main Menu Broadband microwave reflector antenna with preamplifier

Features

- Extremely wide frequency range
- Simultaneous reception of two orthogonal polarization planes
- Can be integrated into the SHF Directional Antenna Systems R&S®AC 090/120/180/300
- Fast and simple installation
- Sturdy mechanical design

Brief description

The Dual-Polarized Reflector Antenna R&S®AC 025DP has been optimized for use in the range 18 GHz to 40 GHz.

For independent operation, the antenna is installed on a tripod or, for frequency range extension, it can be combined with the steerable SHF Directional Antenna Systems R&S®AC 090/120/180/300.

The antenna is equipped with an integrated preamplifier for optimal signal processing.

1 1.3

10 18

26.5

40

GHz

Specifications

1.5

10

10 kHz

Antenna		Noise figure	typ. <5 dB
Frequency range	18 GHz to 40 GHz	Power consumption	15 V/0.5 A (max.)
Polarization	$2 \times$ linear (orthogonal relative to each other)	MTBF	>50 000 h
Input impedance	50 Ω	Operating	
VSWR (with preamplifier)	<3.0 (typ. <2.5)	temperature range	-30 °C to +55 °C
Gain	26 dBi to 32 dBi	Protection class	IP 45 (in line with DIN EN 60529)
Half-power beamwidth	4.5° to 2° (typ.)	Dimensions	
Reflector diameter	250 mm	(diameter \times length)	approx. 320 mm $ imes$ 340 mm
Connector	$2 \times K$ female	Weight	approx. 5 kg
Preamplifier (typical value	es)		
Gain	typ. >30 dB		
1 dB compression point	typ. >8 dBm		

Ordering information

Dual-Polarized			Recommended extras		
Reflector Antenna	R&S®AC025DP	4062.5830.02	Power Supply	R&S®IN 308	4059.6752.02
			Adapter for		
			Wooden Tripod R&S®HZ-1	R&S®KA 308R2	4057.8606.00
			Wooden Tripod	R&S®HZ-1	0837.2310.02

Typical gain

Overview Type Index Main

Chapter

3

Menu

Crossed Log-Periodic Antennas R&S®HL 024A1/S1

1 GHz to 18 GHz

Log-periodic directional antennas for simultaneous reception of horizontally and vertically polarized waves

Features

- Horizontal and vertical polarization
- Wide frequency range
- Radiation pattern virtually independent of frequency
- Can be used as a feed for the Microwave Directional Antenna R&S®A C008 (R&S®HL 024A1)
- Can be used as a feed for the SHF Directional Antenna Systems R&S®AC 090 to R&S®AC 300 (R&S®HL 024S1)

Brief description

The log-periodic directional R&S®HL 024A1 with crossed antenna elements is suitable for simultaneous reception of horizontally and vertically polarized waves.

It can also be used as a transmitting antenna for low power.

The R&S[®]HL024A1 can additionally be used as a feed for the Microwave Directional Antenna R&S[®]AC 008.

The log-periodic directional R&S®HL024S1 is of identical design and can be used as a feed for the SHF Directional Antenna Systems R&S®AC 090 to R&S®AC 300.

3

Chapter Overview

Type Index

100 MHz 1 1.3 10

10 18 26.5 111

40

GHz

Specifications

1.5

10 kHz

Frequency range	1 GHz to 18 GHz	Operating
Polarization	linear/horizontal and vertical	temperature rai
Input impedance	50 Ω	Max. wind spee
VSWR	≤2.5	MTBF
Max. input power	10 W to 3 W CW	Dimensions (dia
Gain	typ. 7 dBi	With radome
Connector	$2 \times SMA$ female	Weight

nge ed –40 °C to +55 °C 180 km/h (without ice deposit) >150 000 h meter × height) approx. 210 mm × 300 mm approx. 0.7 kg

Ordering information

Crossed		
Log-Periodic Antenna	R&S®HL024A1	0650.7510.03
Crossed		
Log-Periodic Antenna	R&S®HL024S1	4055.1256.02
Log-Periodic Antenna	R&S®HL024S1	4055.1256.02

Recommended extras		
Microwave Cable, 5 m	R&S®AC008W2	0751.6931.04
Microwave Cable, 10 m	R&S®AC008W2	0751.6931.05
Mast Adapter for		
R&S®HFU-Z	R&S®HL025-Z	0661.9910.02
Tripod and Mast	R&S®HFU-Z	0100.1114.02
Mast	R&S®HFU-Z	0100.1120.02
Adapter for R&S®HZ-1	R&S®HL025Z1	4053.4006.02
Wooden Tripod	R&S®HZ-1	0837.2310.02

Typical radiation patterns in the E and H planes

3

Chapter **Overview**

Туре Index

3

Chapter Overview

Type Index

Main Menu

Crossed Log-Periodic Antenna R&S®HL 024S2

1 GHz to 18 GHz Log-periodic directional antenna consisting of R&S®HL024A1 and passive polarization switching network

Features

- Horizontal, vertical, left-hand or right-hand circular polarization
- Wide frequency range
- Radiation pattern virtually independent of frequency
- Remote-controlled polarization selection with optional Control Unit R&S[®]GB 016
- Can be used as a feed for the Directional Antennas R&S®AC 008 to R&S®AC 300

Brief description

The directional R&S®HL024S2 with crossed antenna elements can be used for waves with horizontal, vertical, left-hand or right-hand circular polarization.

It consists of the Antenna R&S®HL024A1 and a polarization switching network. Polarization can be selected by remote control using the R&S®GB016, for instance.

The R&S[®] HL 024S2 can also be used as a feed for the Directional Antennas R&S[®] AC 008 to R&S[®] AC 300.
 1.5
 10
 100 MHz
 1 1.3
 GHz
 10
 18

 |
 |
 |
 |
 |
 |
 |
 |
 |

Specifications

10 kHz

Frequency range	1 GHz to 18 GHz	Connector	SMA female
Polarization	horizontal, vertical, left-hand or right-hand	Control connector	10-contact, round, male
	circular (selectable)	Operating	
Input impedance	50 Ω	temperature range	-40 °C to +55 °C
VSWR		Max. wind speed	180 km/h (without ice deposit)
1 GHz to 12 GHz	≤2.5	MTBF	>150 000 h
12 GHz to 18 GHz	≤3	Dimensions (diameter ×	: height)
Gain (switching network		With radome	approx. 210 mm × 353 mm
taken into account)	4 dBi to 6 dBi	Weight	approx. 1 kg
Circularity	typ. 2 dB		

Ordering information

Crossed			Recommended extras		
Log-Periodic Antenna	•Periodic Antenna R&S®HL024S2 4052.1	4052.1003.02	Control Unit	R&S®GB016	4056.7006.02
			Control Cable, 10 m	R&S®GB 016Z1	4056.7270.02
			Microwave Cable, 5 m	R&S®AC008W2	0751.6931.04
			Microwave Cable, 10 m	R&S®AC008W2	0751.6931.05
			Adapter for R&S®HZ-1	R&S®HL025Z1	4053.4006.02
			Wooden Tripod	R&S®HZ-1	0837.2310.02

Typical radiation patterns in the E and H planes

3

40

26.5

Chapter Overview

Type Index

Crossed Log-Periodic Antenna R&S®HL 024S7

1 GHz to 18 GHz

Log-periodic directional antenna consisting of R&S®HL024A1 and a broadband preamplifier for horizontal or vertical polarization (selectable)

Features

- Wide frequency range
- Selectable broadband preamplifier
- Horizontal or vertical polarization switch-selectable
- No reduction in S/N due to the use of a low-noise amplifier at the antenna output
- Can be used as a feed for the SHF Directional Antenna Systems R&S[®]AC 090 to R&S[®]AC 300

Brief description

The directional R&S®HL024S7 consists of the Crossed Log-Periodic Antenna R&S®HL024A1 and a broadband preamplifier. It is suitable for the reception of linearly polarized waves.

Horizontal or vertical polarization can be switch-selected.

The preamplifier can be optionally switched on. It prevents a significant reduction in S/N due to loss in RF cables connecting, for instance, the antenna to a receiver.

The antenna can also be used as a feed for the SHF Directional Antenna Systems R&S®AC 090 to R&S®AC 300.

3

Type Index

40

1 1.3

GHz

Specifications

1.5

10

10 kHz

Frequency range	1 GHz to 18 GHz	Power supply	+15 V DC (max. 0.3 A)	
Polarization	horizontal or vertical (selectable)	Connector	SMA female	
Input impedance	50 Ω	Control connector	10-contact, round, male	
VSWR	<2.5	MTBF	>100 000 h	
Gain (without polarization		Operating		
switch/preamplifier)	>6 dBi	temperature range	-30 °C to +55 °C	
Noise figure	≤3 dB	Dimensions (diameter × I	neight)	
Gain (active network –		With radome	approx. 210 mm × 390 mm	
can be switched on)	26 dB ±2 dB	Weight	approx. 1 kg	
1 dB compression point	approx. +8 dBm			

Ordering information

Crossed			Recommended extras		
Log-Periodic Antenna	R&S®HL024S7	4042.8505.02	Control Unit	R&S®GB016	4056.7006.02
			Control Cable, 10 m	R&S®GB016Z1	4056.7270.02
			Microwave Cable, 5 m	R&S®AC 008W2	0751.6931.04
			Microwave Cable, 10 m	R&S®AC 008W2	0751.6931.05
			Adapter for R&S®HZ-1	R&S®HL025Z1	4053.4006.02
			Wooden Tripod	R&S®HZ-1	0837.2310.02

Typical radiation patterns in the E and H planes

3

Chapter Overview

Type Index

Crossed Log-Periodic Antenna R&S®HL 024S8

1 GHz to 18 GHz

Log-periodic directional antenna consisting of R&S®HL024A1 and two broadband preamplifiers for horizontal and vertical polarization

Features

- Wide frequency range
- Selectable broadband preamplifiers
- Simultaneous connection of both polarization planes
- No reduction in S/N due to the use of a low-noise amplifier at the antenna output
- Can be used as a feed for the SHF Directional Antenna Systems R&S[®]AC 090 to R&S[®]AC 300

Brief description

The directional R&S®HL024S8 consists of the Crossed Log-Periodic Antenna R&S®HL024A1 and two broadband preamplifiers. It is suitable for the reception of linearly polarized waves.

Connectors are provided for simultaneous use of both polarization planes.

The preamplifiers can be optionally switched on. They prevent a significant reduction in S/N due to loss in RF cables connecting, for instance, the antenna to a receiver.

The antenna can also be used as a feed for the SHF Directional Antenna Systems R&S®AC 090 to R&S®AC 300.

Chapter Overview

3

Type Index

10 100 MHz 1 1.3

40

GHz

Specifications

1.5

10 kHz

Frequency range	1 GHz to 18 GHz	Powe
Polarization	horizontal and vertical (simultaneously)	Conn
Input impedance	50 Ω	Cont
VSWR	<2.5	MTB
Gain		Oper
(without preamplifier)	>6 dBi	temp
Noise figure	≤3 dB	Dime
Gain (active network –		Wi
can be switched on)	26 dB ±2 dB	Weig
1 dB compression point	approx. +8 dBm	

Power supply	+15 V DC (max. 0.7 A)
Connector	$2 \times SMA$ female
Control connector	10-contact, round, male
MTBF	>55 000 h
Operating	
temperature range	-30 °C to +55 °C
Dimensions (diameter × h	neight)
With radome	approx. 210 mm $ imes$ 390 mm
Weight	approx. 1 kg

Ordering information

Crossed			Recommended extras		
Log-Periodic Antenna	Periodic Antenna R&S®HL 024S8 4042.75	4042.7509.02	Control Unit	R&S®GB016	4056.7006.02
			Control Cable, 10 m	R&S®GB016Z1	4056.7270.02
			Microwave Cable, 5 m	R&S®AC008W2	0751.6931.04
			Microwave Cable, 10 m	R&S®AC008W2	0751.6931.05
			Adapter for R&S®HZ-1	R&S®HL025Z1	4053.4006.02
			Wooden Tripod	R&S®HZ-1	0837.2310.02

Typical radiation patterns in the E and H planes

3

Chapter Overview

Type Index

Crossed Log-Periodic Antenna R&S®HL 024S9

1 GHz to 18 GHz

Log-periodic directional antenna consisting of R&S® HL 024A1, two broadband preamplifiers and a switching network for linear or circular polarization

Features

- Wide frequency range
- Broadband preamplifiers
- Switching network for horizontal, vertical and circular polarization
- No reduction in S/N due to the use of a low-noise amplifier at the antenna output
- Can be used as a feed for the SHF Directional Antenna Systems R&S[®]AC 090 to R&S[®]AC 300

Brief description

The directional R&S®HL024S9 consists of the Crossed Log-Periodic Antenna R&S®HL024A1 and two broadband preamplifiers. It is suitable for the reception of linearly polarized waves.

Due to the integrated switching network, horizontal, vertical or left-hand and right-hand circular polarization can be selected.

The preamplifiers prevent a significant reduction in S/N due to loss in RF cables connecting, for instance, the antenna to a receiver.

The antenna can also be used as a feed for the SHF Directional Antenna Systems R&S®AC 090 to R&S®AC 300.

Chapter Overview

3

Type Index

10 100 MHz 1 1.3

10 18 26.5

40

GHz

1

Specifications

1.5

10 kHz

Frequency range	1 GHz to 18 GHz
Polarization	horizontal, vertical, left-hand or right-hand
	circular
Input impedance	50 Ω
VSWR	<2.5
Gain (without preamplifier	
and switching network)	>6 dBi
Circularity	typ. 3 dB
Noise figure	≤3 dB
Gain (linear polarization)	26 dB ±2 dB
Gain (circular polarization)	>22 dB ±2 dB

I dB compression point	approx. +8 dBm
Power supply	+15 V DC (max. 0.5 A)
Connector	SMA female
Control connector	10-contact, round, male
MTBF	>55 000 h
Operating	
temperature range	−30 °C to +55 °C
Dimensions (diameter \times he	eight)
With radome	approx. 210 mm $ imes$ 390 mm
Weight	approx. 1.2 kg

Ordering information

Crossed			Recommended extras		
Log-Periodic Antenna	Periodic Antenna R&S®HL024S9 4	4047.6252.02	Control Unit	R&S®GB016	4056.7006.02
			Control Cable, 10 m	R&S®GB016Z1	4056.7270.02
			Microwave Cable, 5 m	R&S®AC008W2	0751.6931.04
			Microwave Cable, 10 m	R&S®AC008W2	0751.6931.05
			Adapter for R&S®HZ-1	R&S®HL025Z1	4053.4006.02
			Wooden Tripod	R&S®HZ-1	0837.2310.02

Typical radiation patterns in the E and H planes

3

Chapter Overview

Type Index

3

Chapter Overview

Type Index

Main Menu

Log-Periodic Antennas R&S®HL 050/R&S®HL 050S1

850 MHz to 26.5 GHz Log-periodic directional antennas for linear polarization

Features

- Extremely wide frequency range
- Rotation-symmetrical radiation patterns
- High gain due to V-shaped configuration of antenna elements
- Ideal for use as a feed for the Microwave Directional Antenna R&S®AC 008 and the SHF Directional Antenna Systems R&S®AC 090 to R&S®AC 300

Brief description

Due to its broadband characteristics, the Log-Periodic Antenna R&S[®]HL 050 is particularly suitable for radiomonitoring and measurements.

When used as a feed in reflector antennas, the antenna offers optimum secondary radiation characteristics due to its almost rotation-symmetrical radiation pattern.

The R&S[®]HL050 can be used as a separate antenna or as a feed for the Microwave Directional Antenna R&S[®]AC008.

The R&S®HL 050S1 is of identical design and used as a feed for the SHF Directional Antenna Systems R&S®AC 090 to R&S®AC 300.
 1.5
 10
 100 MHz
 1 1.3
 GHz
 10
 18
 26.5

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Specifications

10 kHz

Frequency range	850 MHz to 26.5 GHz
Polarization	linear
Input impedance	50 Ω
VSWR	≤2.5
Max. input power	10 W to 2 W
Gain	typ. 8.5 dBi
Connector	PC 3.5 female
MTBF	>1 000 000 h

Operating	
temperature range	-30 °C to +55 °C
Max. wind speed	180 km/h (without ice deposit)
Dimensions (diameter × h	eight)
With radome	approx. 210 mm × 300 mm
Weight	approx. 0.7 kg

40

3

Chapter Overview

Type Index

Main

Menu

Ordering information

Log-Periodic Antenna	R&S®HL050	4062.4063.02	Recommended extras		
Log-Periodic Antenna R&S®HL050S1 4065.0100.02	R&S®HL050S1 4065.0100.02	4065.0100.02	Microwave Cable, 5 m	R&S®AC008W2	0751.6931.04
			Microwave Cable, 10 m	R&S®AC008W2	0751.6931.05
		Mast Adapter for			
		R&S®HFU-Z	R&S®HL025-Z	0661.9910.02	
		Tripod and Mast	R&S®HFU-Z	0100.1114.02	
		Mast	R&S®HFU-Z	0100.1120.02	
			Adapter for R&S®HZ-1	R&S®HL025Z1	4053.4006.02
			Wooden Tripod	R&S®HZ-1	0837.2310.02

Typical gain

Log-Periodic Directional Antenna with Preamplifier R&S®HL050S7

850 MHz to 26.5 GHz Log-periodic directional antenna consisting of R&S®HL 050 and broadband preamplifier for linear polarization

Features

- Extremely wide frequency range
- Rotation-symmetrical radiation patterns
- High gain due to V-shaped configuration of antenna elements
- No reduction in S/N due to the use of a low-noise amplifier at the antenna output
- Ideal as a feed for the SHF Directional Antenna Systems R&S®AC 090 to R&S®AC 300
- Preamplifier can be bypassed via control unit, e.g. at high field strengths

Brief description

The Log-Periodic Directional Antenna R&S®HL 050S7 consists of a Log-Periodic Antenna R&S®HL 050 with preamplifier and is suitable for the reception of linearly polarized waves.

The integrated preamplifier is extremely broadband and low-noise. It prevents a significant reduction in S/N due to loss in RF cables connecting, for instance, the antenna to a receiver.

Due to its almost rotation-symmetrical radiation pattern, the R&S®HL050S7 offers optimum secondary radiation characteristics for use as a feed in reflector antennas. The antenna is preferably used as a feed for the SHF Directional Antenna Systems R&S®AC 090 to R&S®AC 300.

Chapter Overview

3

Type Index

GHz 1

40 10 18 26.5

Specifications

1.5

10 kHz

Frequency range	850 MHz to 26.5 GHz
Polarization	linear
Input impedance	50 Ω
VSWR (with preamplifier)	typ. <2.5
Gain (without preamplifier)	typ. 8.5 dBi
Gain	typ. >27 dB
Noise figure	typ. <3.6 dB
1 dB compression point	
(at output)	typ. >5 dBm

10

Power supply	
Amplifier	15 V/0.2 A (max.)
Switching relay	12 V/0.25 A (max.)
Connector	PC 3.5 female
Control connector	10 pin female
MTBF	>100 000 h
Operating	
temperature range	-30 °C to +55 °C
Max. wind speed	180 km/h
Dimensions	
(diameter $ imes$ height)	approx. 210 mm $ imes$ 390 mm
Weight	approx. 0.8 kg

1 1.3

1.111

Ordering information

Log-Periodic			Recommended extras		
Directional Antenna with		Control Unit	R&S®GB016	4056.7006.02	
Preamplifier	R&S®HL050S7	4064.6040.02	Control Cable, 10 m	R&S®GB016Z1	4056.7270.02
			Microwave Cable, 5 m	R&S®AC008W2	0751.6931.04
			Microwave Cable, 10 m	R&S®AC008W2	0751.6931.05
			Adapter for R&S®HZ-1	R&S®HL025Z1	4053.4006.02
			Wooden Tripod	R&S®HZ-1	0837.2310.02

Typical gain (without preamplifier)

Typical radiation pattern

Chap Overv	ter view
01011	
Type Index	[
Main Menu	I

3

3

Chapter Overview

Type Index

Main Menu

Omnidirectional Antennas R&S®AC 004R1/R&S®AC 004R2

18 GHz to 26 GHz 26 GHz to 40 GHz Omnidirectional broadband reception of right-hand circularly polarized signals

Features

- Omnidirectional reception
- Wide frequency range
- Circular polarization
- Reception of horizontally and vertically polarized signals

Brief description

The Omnidirectional Antennas R&S®AC 004R1 and R&S®AC 004R2 have been optimized for omnidirectional reception in the frequency ranges 18 GHz to 26 GHz and 26 GHz to 40 GHz.

The circularly polarized antennas can also be used for reception of horizontally and vertically polarized signals.

Due to their mechanical design, the antennas are suitable for use under extreme environmental conditions (e.g. in vehicles). 10 100 MHz 1 1.3 GHz

Specifications

1.5

10 kHz

Frequency range		MTBF	>500 000 h
R&S®AC 004R1	18 GHz to 26 GHz	Operating	
R&S [®] AC 004R2	26 GHz to 40 GHz	temperature range	-35 °C to +65 °C
Polarization	right-hand circular	Max. wind speed	180 km/h (without ice deposit)
Input impedance	50 Ω	Dimensions (diameter ×	<pre>height) with radome</pre>
VSWR	<2.5	R&S®AC 004R1	approx. 150 mm $ imes$ 123 mm
Gain	typ. 2 dBi	R&S®AC 004R2	approx. 95 mm $ imes$ 127 mm
Uncircularity		Weight	
of azimuth pattern	typ. ±2 dB	R&S®AC 004R1	approx. 1.4 kg
Connector	RPC2.92 (K) female	R&S [®] AC 004R2	approx. 1.8 kg

Ordering information

Omnidirectional Anten	na	
18 GHz to 26 GHz	R&S®AC004R1	0749.3000.03
26 GHz to 40 GHz	R&S®AC004R2	0749.3251.03

Typical horizontal radiation pattern

Typical vertical radiation pattern

01	
Chap Over	view
Type Index	ĸ
Mair	1

Menu

3

10 18 26.5

40

Double-Ridged Waveguide Horn Antenna R&S®HF 906

1 GHz to 18 GHz

3

Chapter Overview

Type Index

Main Menu Broadband directional antenna, ideal for

use in EMC measurements

Features

- Wide frequency range
- High gain
- Low VSWR
- Input power up to 300 W CW/500 W PEP
- Ideal for use in EMC laboratories
- Individual calibration in line with ANSI C63.5/DIN 45003

Brief description

The linearly polarized Double-Ridged Waveguide Horn Antenna R&S®HF 906 is a broadband, compact transmitting and receiving antenna for the frequency range 1 GHz to 18 GHz.

High gain and low VSWR allow the measurement of low field strengths as well as the emission of high powers without any significant return loss.

The calibrated antenna is ideal for use in EMC measurement laboratories. The use of an N connector allows easy adaptation to existing equipment as well as high input power. The antenna is made of aluminum and tinned GRP boards to keep its weight low.

Specifications

Frequency range	1 GHz to 18 GHz	Connector	N female
Polarization	linear	MTBF	>250 000 h
Input impedance	50 Ω	Operating	
VSWR	typ. <1.5	temperature range	0 °C to +50 °C
Max. input power	300 W CW/500 W PEP	Dimensions (L \times W \times H)	approx. 290 mm $ imes$ 250 mm $ imes$ 160 mm
Gain	7 dBi to 14 dBi (typ.)	Weight	approx. 1.5 kg

3

Contents Overview Type Index

A	
Absorption	 1. In the transmission of electrical, electromagnetic, or acoustic signals, the conversion of the transmitted energy into another form, usually thermal. → Absorption is one cause of signal attenuation. → The conversion takes place as a result of interaction between the incident energy and the material medium, at the molecular or atomic level. (ANS T1.523.201) 2. The irreversible conversion of energy of an electromagnetic wave into another form of energy as a result of its interaction with matter. (IEEE)
ANSI	American National Standards Institute The U.S. standards organization that establishes procedures for the development and coordination of voluntary American National Standards. (ANS T1.523.201)
Antenna	 Any structure or device used to collect or radiate electromagnetic waves. (ANS T1.523.201) A device that converts radio frequency electrical energy to radiated electromagnetic energy and vice versa. (ANS T1.523.201)
Antenna Aperture	see "Aperture"
Antenna Array	An assembly of antenna elements with dimensions, spacing, and illumination sequence such that the fields for the individual elements combine to produce a maximum intensity in a particular direction and minimum field intensities in other directions. (ANS T1.523.201)
Antenna Dissipative Loss	A power loss resulting from changes in the measurable impedance of a practical antenna from a value theoretically calculated for a perfect antenna. (ANS T1.523.201)
Antenna Effective Area	see "Effective Area"
Antenna Efficiency	The ratio of the total radiated power to the total input power. $ ightarrow$ The total radiated power is the total input power less antenna dissipative losses. (ANS T1.523.201)
Antenna Factor	1. The antenna factor K is the quotient of the electric field strength E and the voltage V present at 50 Ω (e.g. a matched receiver input).
	$\mathcal{K} = \frac{\text{Electric field strength}}{\text{Antenna output voltage at 50}\Omega}$
	\rightarrow This factor includes the effects of antenna effective length or gain and mismatch and transmission line losses. \rightarrow The factor for electric field strength is not necessarily the same as the factor for magnetic fieldstrength. (IEEE)
Antenna Gain	 The ratio of the power required at the input of a loss-free reference antenna to the power supplied to the input of the given antenna to produce, in a given direction, the same field strength at the same distance. → Antenna gain is usually expressed in dB. → Unless otherwise specified, the gain refers to the direction of maximum radiation. The gain may be considered for a specified polarization. Depending on the choice of the reference antenna, a distinction is made between:
	 absolute or isotropic gain (Gi), when the reference antenna is an isotropic antenna isolated in space; gain relative to a half-wave dipole (Gd), when the reference antenna is a half-wave dipole isolated in space and with an equatorial plane that contains the given direction; (ANS T1.523.201)
	 2. The ratio of the radiation intensity, in a given direction, to the radiation intensity that would be obtained if the power accepted by the antenna were radiated isotropically. → Gain does not include losses arising from impedance and polarization mismatches. → If an antenna is without dissipative loss, then, in any given direction, its gain is equal to its directivity. → If the direction is not specified, the direction of the maximum radiation intensity is implied. (IEEE)
Antenna Gain-to-Noise-Temperature	see "G/T Ratio"
Antenna Lobe	see "Lobe"
Antenna Noise Temperature	The temperature of a hypothetical resistor at the input of an ideal noise-free receiver that would generate the same output noise power per unit bandwidth as that at the antenna output at a specified frequency. → The antenna noise temperature depends on antenna coupling to all noise sources in its environment as well as on noise generated within the antenna. (ANS T1.523.201)
Antenna Tuning Unit	see 'ATU'
Aperture	In a directional antenna, the portion of a plane surface very near the antenna normal to the direction of maximum radiant intensity, through which the major part of the radiation passes. (ANS T1.523.201)

Atmospheric Duct	 A horizontal layer in the lower atmosphere in which the vertical refractive index gradients are such that radio signals (a) are guided or focused within the duct, (b) tend to follow the curvature of the Earth, and (c) experience less attenuation in the ducts than they would if the ducts were not present. → The reduced refractive index at the higher altitudes bends the signals back toward the Earth. Signals in a higher refractive index layer, i.e., duct, tend to remain in that layer because of the reflection and refraction encountered at the boundary with a lower refractive index material. (ANS T1.523.201) 	
Attenuation	 A decrease in intensity of a signal, beam or wave as a result of absorption of energy and of scattering out of the path to the detector, but not including the reduction due to geometric spreading. (ANS T1.523.201) A general term used to denote a decrease in signal magnitude in transmission from one point to another. Attenuation may be expressed as a scalar ratio of the input magnitude to the output magnitude or in decibels. (IEEE) 	
ATU	Antenna Tuning Unit A device used to match the impedance of an antenna to the impedance of a transmitter or receiver frequency selective to provide maximum power transfer.	
Azimuth	The angle between a horizontal reference direction (usually north) and the horizontal projection of the direction of interest, usually measured clockwise. (IEEE)	
В		
Bandwidth	The difference between the limiting frequencies within which performance of a device, in respect to some characteristic, falls within specified limits. (ANS T1.523.201)	
Band	see "Electromagnetic Spectrum"	
Beam	The main lobe of an antenna radiation pattern. (ANS T1.523.201)	
Beamwidth	see "Half-power Beamwidth"	
Bias Tee	A circuit which feeds a DC voltage to a RF path without affecting the RF parameters.	
Barasight	The physical axis of a directional antenna (ANS T1 523 201)	
Doresigni		
Boresight Error	 The angular deviation of the electrical boresight of an antenna from its reference. (IEEE) The deviation of the real main lobe direction to the theoretically available main lobe direction. 	Contents Overview
Boresight Error BW	 The angular deviation of the electrical boresight of an antenna from its reference. (IEEE) The deviation of the real main lobe direction to the theoretically available main lobe direction. see "Bandwidth" 	Contents Overview
Boresight Error BW	 The angular deviation of the electrical boresight of an antenna from its reference. (IEEE) The deviation of the real main lobe direction to the theoretically available main lobe direction. see "Bandwidth" 	Contents Overview Type
Boresight Error BW C c	 The angular deviation of the electrical boresight of an antenna from its reference. (IEEE) The deviation of the real main lobe direction to the theoretically available main lobe direction. see "Bandwidth" 	Contents Overview Type Index
Boresight Error BW C c Carrier	 The angular deviation of the electrical boresight of an antenna from its reference. (IEEE) The deviation of the real main lobe direction to the theoretically available main lobe direction. see "Bandwidth" In a frequency stabilized system, the sinusoidal component of a modulated wave whose frequency is independent of the modulating wave; or the output of a transmitter when the modulating wave is made zero; or a wave generated at a point in the transmitting system and subsequently modulated by the signal; or a wave generated locally at the receiving terminal which when combined with the side bands in a suitable detector, produces the modulating wave. (ANS T1.523.201) The sinusoidal output signal of a transmitter at a typical frequency without any modulations. 	Contents Overview Type Index Main Menu
Boresight Error BW C c Carrier Carrier	 The angular deviation of the electrical boresight of an antenna from its reference. (IEEE) The deviation of the real main lobe direction to the theoretically available main lobe direction. see "Bandwidth" In a frequency stabilized system, the sinusoidal component of a modulated wave whose frequency is independent of the modulating wave; or the output of a transmitter when the modulating wave is made zero; or a wave generated at a point in the transmitting system and subsequently modulated by the signal; or a wave generated locally at the receiving terminal which when combined with the side bands in a suitable detector, produces the modulating wave. (ANS T1.523.201) The radio frequency power available at the antenna terminal when no modulating signal is present. (IEEE) 	Contents Overview Type Index Main Menu
Boresight Error BW C c Carrier Carrier Power CCIR	 The angular deviation of the electrical boresight of an antenna from its reference. (IEEE) The deviation of the real main lobe direction to the theoretically available main lobe direction. see "Bandwidth" In a frequency stabilized system, the sinusoidal component of a modulated wave whose frequency is independent of the modulating wave; or the output of a transmitter when the modulating wave is made zero; or a wave generated at a point in the transmitting system and subsequently modulated by the signal; or a wave generated locally at the receiving terminal which when combined with the side bands in a suitable detector, produces the modulating wave. (ANS T1.523.201) The sinusoidal output signal of a transmitter at a typical frequency without any modulations. The radio frequency power available at the antenna terminal when no modulating signal is present. (IEEE) Consultative Committee for International Radio A predecessor organization of the ITU-R. (ANS T1.523.201) 	Contents Overview Type Index Main Menu
Boresight Error BW C C C Carrier Carrier Carrier Power CCIR CCITT	 The phytocal case of electrical boresight of an antenna from its reference. (IEEE) The deviation of the real main lobe direction to the theoretically available main lobe direction. see "Bandwidth" In a frequency stabilized system, the sinusoidal component of a modulated wave whose frequency is independent of the modulating wave; or the output of a transmitter when the modulating wave is made zero; or a wave generated at a point in the transmitting system and subsequently modulated by the signal; or a wave generated locally at the receiving terminal which when combined with the side bands in a suitable detector, produces the modulating wave. (ANS T1.523.201) The radio frequency power available at the antenna terminal when no modulating signal is present. (IEEE) Consultative Committee for International Radio A predecessor organization of the ITU-R. (ANS T1.523.201) Consultative Committee for International Telegraph and Telephone A predecessor organization of the ITU-T. (ANS T1.523.201) 	Contents Overview Type Index Main Menu
Boresight Error BW C C C Carrier Carrier Carrier Power CCIR CCITT CISPR	 1. The angular deviation of the electrical boresight of an antenna from its reference. (IEEE) 2. The deviation of the real main lobe direction to the theoretically available main lobe direction. see "Bandwidth" see "Speed of Light" 1. In a frequency stabilized system, the sinusoidal component of a modulated wave whose frequency is independent of the modulating wave; or the output of a transmitter when the modulating wave is made zero; or a wave generated at a point in the transmitting system and subsequently modulated by the signal; or a wave generated locally at the receiving terminal which when combined with the side bands in a suitable detector, produces the modulating wave. (ANS T1.523.201) 2. The radio frequency power available at the antenna terminal when no modulating signal is present. (IEEE) Consultative Committee for International Radio A predecessor organization of the ITU-R. (ANS T1.523.201) Consultative Committee for International Telegraph and Telephone A predecessor organization of the ITU-T. (ANS T1.523.201) International Special Committee on Radio Interference A committee that defines EMC measurement standards. 	Contents Overview Type Index Main Menu
Boresight Error BW C C C C Carrier Carrier Carrier Power CCIR CCITT CISPR Clockwise Polarized Wave	 1. The angular deviation of the electrical boresight of an antenna from its reference. (IEEE) 2. The deviation of the real main lobe direction to the theoretically available main lobe direction. see "Bandwidth" see "Speed of Light" 1. In a frequency stabilized system, the sinusoidal component of a modulated wave whose frequency is independent of the modulating wave; or the output of a transmitter when the modulating wave is made zero; or a wave generated at a point in the transmitting system and subsequently modulated by the signal; or a wave generated locally at the receiving terminal which when combined with the side bands in a suitable detector, produces the modulating wave. (ANS T1.523.201) 2. The radio frequency power available at the antenna terminal when no modulating signal is present. (IEEE) Consultative Committee for International Radio A predecessor organization of the ITU-R. (ANS T1.523.201) International Special Committee on Radio Interference A committee that defines EMC measurement standards. see "Right-hand Polarized Wave" 	Contents Overview Type Index Main Menu
Boresight Error BW C C C C Carrier Carrier Carrier Power CCIR CCITT CISPR Clockwise Polarized Wave Compromising Emanations	 The angular deviation of the electrical boresight of an antenna from its reference. (IEEE) The deviation of the real main lobe direction to the theoretically available main lobe direction. see "Bandwidth" In a frequency stabilized system, the sinusoidal component of a modulated wave whose frequency is independent of the modulating wave; or the output of a transmitter when the modulating wave is made zero; or a wave generated at a point in the transmitting system and subsequently modulated by the signal; or a wave generated locally at the receiving terminal which when combined with the side bands in a suitable detector, produces the modulating wave. (ANS T1.523.201) The radio frequency power available at the antenna terminal when no modulating signal is present. (IEEE) Consultative Committee for International Radio A predecessor organization of the ITU-R. (ANS T1.523.201) Consultative Committee for International Telegraph and Telephone A predecessor organization of the ITU-T. (ANS T1.523.201) International Special Committee on Radio Interference A committee that defines EMC measurement standards. see "Right-hand Polarized Wave" Unintentional signals that, if intercepted and analyzed, would disclose the information transmitted, received, handled, or otherwise processed by information systems equipment. (ANS T1.523.201) 	Contents Overview Type Index Main Menu

dB
dBc
dBd
dBi

D

decibel

Contents Overview

Type Index

Main Menu see "decibel"

dB relative to the carrier power (ANS T1.523.201)

In the expression of antenna gain, the number of decibels of gain of an antenna referenced to the gain of a half-wave dipole.

1*dBd* ≙ 2.15*dBi*

In the expression of antenna gain, the number of decibels of gain of an antenna referenced to the zero dB gain of a free-space isotropic radiator. (ANS T1.523.201)

1. One tenth of the common logarithm of the ratio of relative powers, equal to 0.1 B (bel). \rightarrow The ratio in dB is given by

 $dB = 10\log_{10}\left(\frac{P_1}{P_2}\right),$

where P_1 and P_2 are the actual powers. Power ratios may be expressed in terms of voltage and impedance, E and Z, or current and impedance, I and Z, since

$$P = I^2 \cdot Z = \frac{E^2}{Z} \cdot$$

Thus dB is also given by

$$dB = 10\log_{10}\left(\frac{E_1^2/Z_1}{E_2^2/Z_2}\right) = 10\log_{10}\left(\frac{I_1^2 \cdot Z_1}{I_2^2 \cdot Z_2}\right)$$

If $Z_1 = Z_2$, these become

$$dB = 20\log_{10}\left(\frac{E_1}{E_2}\right) = 20\log_{10}\left(\frac{I_1}{I_2}\right).$$
 (ANS T1.523.201)

The value of the directive gain in the direction of its maximum value. (IEEE)

2. One tenth of a bel, the number of decibels denoting the ratio of the two amounts of power being ten times the logarithm to the base 10 of this ratio.

 \rightarrow The abbreviation dB is commonly used for the term decibel. With P1 and P2 designating two amounts of power and n the number of decibel denoting their ratio,

$$n = 10\log_{10}\left(\frac{P_1}{P_2}\right)$$
 decibel,

When the conditions are such that the ratios of currents or ratios of voltages (or analogous quantities in other fields) are the square roots of the corresponding power ratios, the number of decibels by which the corresponding powers differ is expressed by the following equations:

 $n = 20\log_{10}\left(\frac{I_1}{I_2}\right)$ decibel

see "Directivity"

$$n = 20\log_{10}\left(\frac{U_1}{U_2}\right)$$
 decibel

Where I_1/I_2 and are the given current and voltage ratios, respectively. By extension, these relations between numbers of decibels and ratios of currents or voltages are sometimes applied were these ratios are not the square roots of the corresponding power ratios; to avoid confusion, such usage should be accompanied by a specific statement of this application. Such extensions of the term described should preferably be avoided. (IEEE)

Directive Gain

Directivity

Effective Area

E

The functionally equivalent area from which an antenna directed toward the source of the received signal gathers or absorbs the energy of an incident electromagnetic wave. → Antenna effective area is usually expressed in square meters. (ANS T1.523.201)

Effective Aperture

In a given direction, the ratio of the available power at the terminals of a receiving antenna to the power flux density of a plane wave incident on the antenna from that direction, the wave being polarization matched to the antenna.
 → If the direction is not specified, the direction of maximum radiation intensity is implied. (IEEE)

2. A measure of the receive-power which an antenna can take out of the total incoming power of an certain electromagnetic power density. The effective aperture is normally smaller than the geometrical aperture.

Glossarv

Effective Height	 1. The height of the center of radiation of an antenna above the effective ground level. (ANS T1.523.201) 2. In low-frequency applications involving loaded* or nonloaded vertical antennas, the moment of the current distribution in the vertical section divided by the input current. → For an antenna with symmetrical current distribution, the center of radiation is the center of distribution. For an antenna with asymmetrical current distribution, the center of current moments when viewed from points near the direction of maximum radiation. (ANS T1.523.201) *(Note: 'loaded antennas' means electrically short antennas) 		
Efficiency	The ratio of the useful power output to the total power input. (IEEE)		
EIRP	Equivalent Isotropic Radiated Power The product of the power supplied to the antenna and the antenna gain in a given direction relative to an isotropic antenna (absolute or isotropic gain).		
Electrical Beam Tilt	The shaping of the radiation pattern in the vertical plane of a transmitting antenna by electrical means – so that maximum radiation occurs at an angle below (downtilt) or above (uptilt) the horizontal plane.		
Electric Field	The effect produced by the existence of an electric charge, such as an electron, ion, or proton, in the volume of space or medium that surrounds it. \rightarrow Each of a distribution of charges contributes to the whole field at a point on the basis of superposition. A charge placed in the volume of space or in the surrounding medium has a force exerted on it. (ANS T1.523.201)		
Electric Field Strength	see "Field Strength"		
Electromagnetic Spectrum	 The range of frequencies of electromagnetic radiation from zero to infinity. The electromagnetic spectrum was, by custom and practice, formerly divided into 26 alphabetically designated bands. This usage still prevails to some degree. However the ITU formally recognizes 12 bands, from 30 Hz to 3000 GHz. New bands, from 3 THz to 3000 THz, are under active consideration for recognition. Refer to the figure below. ((ANS T1.523.201) The spectrum of electromagnetic radiation: in wavelengths, gamma ray, shorter than 0.006 nm; X-ray, 0.006 to 5 nm; ultraviolet, 5 nm to 0.4 mm; visible light, 0.4 to 0.7 μm; infrared, 0.7 μm to 1 mm; radio frequency, >1 mm. (IEEE) 		
v frequency quency equency equency tuency	requency requency Centimeter Millimeter Willimeter waves ter waves ter waves red e infrared ight traviolet traviolet traviolet traviolet traviolet traviolet traviolet traviolet		
Extremely low Voice free Very low fr Low free Medium fr	Very high f Ultra high f Ultra high f Super Extremely igh frequency igh	Contents Overview	
ELF VF VLF LF MF HF ITU ITU ITU ITU ITU band band band band 4 5 6 7	VHF UHF SHF EHF III ITU ITU ITU ITU ITU band band band band 9 10 11 12	Type Index	
Nuclear EMP S Non-nuclea Generators Musical instruments and voice microphones	r EMP Nision Microwave emitters Magnatrons s Klystrons Gyrotrons Synchrotrons	Main Menu	
Hz kHz kHz 1 3 10 30 10 300 1 3 1 4 1 1	MHz GHz THz Photon energy in Electron Volts (ev) 10 30 10 300 1 3 10 30 1 100 100 1 100		
10° 10° 10° 10 [°] 10 [°]	ייטו ייטו ייטו ייטו ייט ייט ייט ייט ייט		
100 10 10 11 1 10 ⁸ 10 ⁷ 10 ⁶ 10 ⁵ 10 ⁴ 10 ³ 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
Electromagnetic Wave	A wave produced by the interaction of time-varying electric and magnetic fields.		

→ Electromagnetic waves are known as radio waves, heat rays, light rays, etc., depending on the frequency. (IEEE)

Elevation

The angle between the axis of a searchlight drum and the horizontal. For angles above the horizontal, elevation is positive, and below the horizontal negative. (IEEE)

Glossary	
ЕМС	Electromagnetic Compatibility 1. Electromagnetic compatibility is the condition which prevails when telecommunications equipment is performing its individually designed function in a common electromagnetic environment without causing or suffering unacceptable degradation due to unintentional electromagnetic interference to or from other equipment in the same environment. (ANS T1.523.201) 2. A measure of equipment tolerance to external electromagnetic fields. (IEEE)
EMS	Electromagnetic Susceptibility 1. Of an electronic circuit or device, the degree to which it is subject to malfunction or failure under the influence of electromagnetic radiation. (ANS T1.523.201) 2. Electromagnetic Susceptibility includes all function tests to proof that a technical device is not disturbed by any occurring incoming electromagnetic radiation equal to the defined maximum limit-values.
ЕМІ	Electromagnetic Interference 1. Any electromagnetic disturbance that interrupts, obstructs, or otherwise degrades or limits the effective performance of electronics/electrical equipment. It can be induced intentionally, as in some forms of electronic warfare, or unintentionally, as a result of spurious emissions and responses, intermodulation products, and the like. (ANS T1.523.201) 2. An engineering term used to designate interference in a piece of electronic equipment caused by another piece of electronic or other equipment. EMI sometimes refers to interference caused by nuclear explosion. (ANS T1.523.201) 3. Electromagnetic Interference includes all inspection measurements to prove that a technical device does not emit any electromagnetic radiation higher than the predefined limit-values.
Emission	Electromagnetic energy propagated from a source by radiation or conduction. → The emission may be either desired or undesired and may occur anywhere in the electromagnetic spectrum. (ANS T1.523.201)
E Plane	The plane containing the electric field vector and the direction of maximum radiation. (IEEE)
F	
Feed (Element)	 For continuos aperture antennas, the primary radiator, for example, a horn feeding a reflector. (IEEE) For array antennas, that portion of the antenna which functions to produce the excitation coefficients. (IEEE)
Far-field	see "Far-field region"
Far-field region	The region where the angular field distribution is essentially independent of distance from the source. \rightarrow If the source has a maximum overall dimension D that is large compared to the wavelength, the far-field region is commonly taken to exist at distances greater than 2D ² / λ from the source (λ being the wavelength). (ANS T1.523.201)
Field	The volume of influence of a physical phenomenon, expressed vectorially. (ANS T1.523.201)
Field Strength	The magnitude of an electric, magnetic, or electromagnetic field at a given point. → The field strength of an electromagnetic wave is usually expressed as the rms value of the electric field, in volts per meter. The field strength of a magnetic field is usually expressed in amperes per meter. Synonym: radio field intensity (ANS T1.523.201)
Figure of Merit	see "G/T Ratio"
Flux	The rate of flow of energy through a surface. (IEEE)
Frequency	 The number of cycles occurring per second of an electrical or electromagnetic wave; a number representing a specific point in the electromagnetic spectrum. (ANS T1.523.201) The number of periods per unit time. (IEEE)
Front-to-Back Ratio	Of an antenna, the gain in a specified direction, i.e., azimuth, usually that of maximum gain, compared to the gain in a direction 180° from the specified azimuth. → Front-to-back ratio is usually expressed in dB. (ANS T1.523.201)
G	
G/T ratio	Gain-to-Noise-Temperature, synonym: figure of merit In the characterization of antenna performance, a figure of merit, where G is the antenna gain in decibels at the receive frequency, and T is the equivalent noise temperature* of the receiving system in kelvins. (ANS T1.523.201) *(including antenna noise temperature)

Contents Overview

Type Index

Ground Wave	 In radio transmission, a surface wave that propagates close to the surface of the Earth. The Earth has one refractive index and the atmosphere has another, thus constituting an interface that supports surface wave transmission. These refractive indices are subject to spatial and temporal changes. Ground waves do not include ionospheric and tropospheric waves. (ANS T1.523.201) A radio wave that is propagated over the earth and is ordinarily affected by the presence of the ground and troposphere. The ground wave is refracted because of variations in the dielectric constant of the troposphere including the condition known as surface duct. (IEEE) 	
H Half-power Beamwidth	Of an antenna pattern, the angle between the half-power (3 dB) points of the main lobe, when referenced to the peak effective radiated power of the main lobe. → Beamwidth is usually expressed in degrees. (ANS T1.523.201)	
Hertz	The SI unit of frequency, equal to one cycle per second. \rightarrow A periodic phenomenon that has a period of one second has a frequency of one hertz. (ANS T1.523.201)	
H Plane	The plane containing the magnetic field vector and the direction of maximum radiation.	
HPBW	see "Half-power Beamwidth"	
Hz	see "Hertz"	
I Impedance	The total passive opposition offered to the flow of electric current. \rightarrow Impedance is determined by the particular combination of resistance, inductive reactance, and capacitive reactance in a given circuit.	
Intercept Point	1. Intermodulation products have an output-versus-input characteristic which, when graphically displayed, would theoretically intercept the plot of the desired output-versus-input if the nonlinear device continued to operate linearly without compression. The signal input level at which this theoretical point would occur is called the intercept point and is usually defined in dBm (decibel referred to one milliwatt). The figure below is a graphical representation of the intercept points for a single-tone second order and a two-tone third-order intermodulation product. (IEEE) +20 Second-order intermodulation	Contents Overview
	E 0 Third-order intercept point	Type Index
	Besired signal → Single-tone	Main Menu
	-40 second- order product -60	
	−50 −30 −50 0 +10 +30 Input power in dBm► Intermodulation product intercept point	
	 A point that is an extrapolated convergence – not directly measurable – of intermodulation distortion products in the desired output. That point indicates how well a receiver performs in the presence of strong nearby signals. 	
Intermodulation	The production, in a nonlinear element of a system, of frequencies corresponding to the sum and difference frequencies of the fundamentals and harmonics thereof that are transmitted through the element. (ANS T1.523.201)	
Intermodulation Product	In the output of a nonlinear system, a frequency produced by intermodulation of harmonics of the frequencies present in the input signal. (ANS T1.523.201)	
lonosphere	That part of the atmosphere, extending from about 70 to 500 kilometers, in which ions and free electrons exist in sufficient quantities to reflect and/or refract electromagnetic waves. (ANS T1.523.201)	

Isotropic Antenna	A hypothetical antenna that radiates or receives equally in all directions.
	\rightarrow lsotropic antennas do not exist physically but represent convenient reference antennas for expressing directional properties of physical antennas. (ANS T1.523.201)
Isotropic Radiator	see "Isotropic Antenna"
ITU	International Telecommunication Union A civil international organization established to promote standardized telecommunications on a worldwide basis. The ITU-R and ITU-T are committees under the ITU. The ITU headquarters is located in Geneva, Switzerland. While older than the United Nations, it is recognized by the U.N. as the specialized agency for telecommunications. (ANS T1.523.201)
ITU-R	International Telecommunication Union - Radiocommunications Sector The Radiocommunications Sector of the ITU; responsible for studying technical issues related to radiocommunications, and having some regulatory powers. → A predecessor organization was the CCIR. (ANS T1.523.201)
ITU-T	International Telecommunication Union - Telecommunication Standardization Sector The Telecommunication Standardization Sector of the International Telecommunication Union (ITU). \rightarrow ITU-T is responsible for studying technical, operating, and tariff questions and issuing recommendations on them, with the goal of standardizing telecommunications worldwide. \rightarrow In principle, the ITU-T combines the standards-setting activities of the predecessor organizations formerly called the International Telegraph and Telephone Consultative Committee (CCITT) and the International Radio Consultative Committee (CCIR). (ANS T1.523.201)
K	
K Factor	see "Antenna Factor"
L	
Left-hand Polarized Wave	An elliptically or circularly polarized wave, in which the electric field vector, observed in the fixed plane, normal to the direction of propagation, whilst looking in the direction of propagation, rotates with time in a left-hand or anticlockwise direction. \rightarrow also called anticlockwise polarized wave (ANS T1.523.201)
Lobe	 A lobe is a portion of the directional pattern bounded by one or two cones of nulls. (IEEE) A three-dimensional section of the radiation pattern of a directional antenna, bounded by one or more cones of nulls or by regions of diminished irradiance. (ANS T1.523.201)
Loss	 The diminution, usually expressed in dB, of signal level in a communications medium. (ANS T1.523.201) The power, usually expressed in watts, consumed or dissipated by a circuit or component without accomplishing useful work or purpose; e.g., heating (hysteresis loss) that occurs in the core of a transformer. (ANS T1.523.201) The attenuation of a signal level in a communications medium. (usually expressed in dB)
М	
Main Beam	see "Main Lobe"
Main Lobe	or Major Lobe Of an antenna radiation pattern, the lobe containing the maximum power (exhibiting the greatest field strength). → The width of the main lobe is usually specified as the angle encompassed between the points where the power has fallen 3 dB below the maximum value. (ANS T1.523.201)
Matched	Matched means that the impedance of e.g. an antenna is equal to the impedance of the RF cable as well as to the impedance of the connected device (e.g. transmitter or receiver). No reflections degrade the power transmission. A matched system offers the highest efficiency.
Mean Power	The average power supplied to the antenna transmission line by a transmitter during an interval of time sufficiently long compared with the lowest frequency encountered in the modulation taken under normal operating conditions. \rightarrow Normally, a time of 0.1 second, during which the mean power is greatest, will be selected. (ANS T1.523.201)
Medium	In telecommunications, the transmission path along which a signal propagates, such as a wire pair, coaxial cable, waveguide, optical fiber, or radio path. (ANS T1.523.201)

Contents Overview

Type Index

MTBF	Mean Time Between Failure An indicator of expected system reliability calculated on a statistical basis from the known failure rates of various components of the system. MTBF is usually expressed in hours. (ANS T1.523.201)		
MTTR	Mean Time To Repair The time interval (hours) that may be expected to return a failed equipment to proper operation. (IEEE)		
Ν			
Near Field	see "Near-field Region"		
Near-field Region	The close-in region of an antenna wherein the angular field distribution is dependent upon the distance from the antenna. (ANS T1.523.201)		
Near Zone	see "Near-field Region"		
NF	see "Noise Figure"		
Noise	An undesired disturbance within the frequency band of interest; the summation of unwanted or disturbing energy introduced into a communications system from man-made and natural sources. (ANS T1.523.201)		
Noise Factor	see "Noise Figure"		
Noise Figure	 Of an active device, over the bandwidth of interest, the contribution by the device itself to thermal noise at its output. The noise figure is usually expressed in decibels (dB), and is with respect to thermal noise power at the system impedance, at a standard noise temperature (usually 20 °C, 293 K) over the bandwidth of interest. It is determined by (a) measuring (determining) the ratio, usually expressed in dB, of the thermal noise power at the output, to that at the input, and (b) subtracting from that result, the gain, in dB, of the system. Typical noise figures range from 0.5 dB for very low noise devices, to 4 to 8 dB. In some systems, e.g., heterodyne systems, total output noise power includes noise from other than thermal sources, such as spurious contributions from image-frequency transformation, but noise from these sources is not considered in determining the noise figure. In this example, the noise figure is determined only with respect to that noise that appears in the output via the principal frequency transformation of the system, and excludes noise that appears via the image frequency transformation. (ANS T1.523.201) At a selected input frequency the ratio of (A) the total noise power per unit bandwidth (at a corresponding output frequency) delivered by the system into an output termination to (B) the portion thereof engendered at the input frequency by the input termination, whose noise temperature is standard (290 K (Kelvins) at all frequencies). (IEEE) 	Con ⁻ Ove	tents
Noise Temperature	At a pair of terminals, the temperature of a passive system having an available noise power per unit bandwidth at a specified frequency equal to that of the actual terminals of a network. → The noise temperature of a simple resistor is the actual temperature of that resistor. The noise temperature of a diode may be many times the actual temperature of the diode. (ANS T1.523.201) → Noise temperature of an antenna depends on its coupling to all noise sources in its environment as well as noise generated within the antenna. (IEEE)	Type Inde	e ex
NVIS	Near-vertical-incidence Skywave In radio propagation, a wave that is reflected from the ionosphere at a nearly vertical angle and that is used in short-range communications to reduce the area of the skip zone and thereby improve reception beyond the limits of the ground wave. (ANS T1.523.201)	Mai Mer	n 1u
O Omnidirectional Antenna	An antenna that has a radiation pattern that is nondirectional in azimuth. \rightarrow The vertical radiation pattern may be of any shape. (ANS T1.523.201)		
P Peak Envelope Power	see "PEP"		
PEP	Peak envelope power The average power supplied to the antenna transmission line by a transmitter during one radio frequency cycle at the crest of the modulation envelope taken under normal operating conditions. (ANS T1.523.201)		
Phantom Feeding	A DC supply voltage is fed into a RF cable via a bias tee circuit		

Contents Overview Type Index

Polarization	Of an electromagnetic wave, the property that describes the orientation, i.e., time-varying direction and amplitude, of the electric field vector. → States of polarization are described in terms of the figures traced as a function of time by the projection of the extremity of a representation of the electric vector onto a fixed plane in space, which plane is perpendicular to the direction of propagation. In general, the figure, i.e., polarization, is elliptical and is traced in a clockwise or counterclockwise sense, as viewed in the direction of propagation. If the major and minor axes of the ellipse are equal, the polarization is said to be circular. If the minor axis of the ellipse is zero, the polarization is said to be linear. Rotation of the electric vector in a clockwise sense is designated right-hand polarization, and rotation in a counterclockwise sense is designated left-hand polarization. (ANS T1.523.201)
Foranzation Decoupting	e.g. cross-polarization decoupling.
Polarization Diversity	Diversity transmission and reception wherein the same information signal is transmitted and received simultaneously on orthogonally polarized waves with fade-independent propagation characteristics. (ANS T1.523.201)
Power	The rate of transfer or absorption of energy per unit time in a system. (ANS T1.523.201)
Propagation	The motion of waves through or along a medium. → For electromagnetic waves, propagation may occur in a vacuum as well as in material media. (ANS T1.523.201)
Propagation Channel	The physical medium in which the electromagnetic wave propagation takes place. This channel includes everything that influences the propagation between two antennas.
Propagation Path	see "Propagation Channel"
R	
Radiant Power	The rate of flow of electromagnetic energy, i.e., radiant energy. \rightarrow Radiant power is usually expressed in watts, i.e., joules per second. (ANS T1.523.201)
Radiation	In radio communication, the emission of energy in the form of electromagnetic waves. The term is also used to describe the radiated energy. (IEEE)
Radio Frequency	see "RF"
Radio Path	In the medium air, the channel or path through which the propagation between two antennas takes place.
Radiation Pattern	The variation of the field intensity of an antenna as an angular function with respect to the antenna axis. \rightarrow A radiation pattern is usually represented graphically for the far-field conditions in either horizontal or vertical plane. (ANS T1.523.201)
Reciprocity	For antennas, this means that the same antenna can be used either for receiving as well as for transmitting purposes. \rightarrow One exception to this rule are the active antennas. These can generally be used for receiving only.
Reference Antenna	An antenna that may be real, virtual, or theoretical, and has a radiation pattern that can be used as a basis of comparison with other antenna radiation patterns.
	\rightarrow Examples of reference antennas are unit dipoles, half-wave dipoles, and isotropic, i.e., omnidirectional antennas. (ANS T1.523.201)
RF	Of, or pertaining to, any frequency within the electromagnetic spectrum normally associated with radio wave propagation. \rightarrow For designation of subdivisions, see 'Electromagnetic Spectrum' and its associated diagram. (ANS T1.523.201)
Right-hand Polarized Wave	An elliptically or circularly polarized wave, in which the electric field vector, observed in any fixed plane, normal to the direction of propagation, rotates with time in a right-hand or clockwise direction. Synonym: clockwise polarized wave. (ANS T1.523.201)
Rotary Joint	A device transmitting cable-bound RF signals via a mechanically rotating joint to a device which is rotated. Slip rings at a rotary joint are used for feeding e.g. control signals through the mechanically rotating joint. They are not meant for RF signals.
S	
Side Lobe	A radiation lobe in any direction other than that of the major lobe. (IEEE)
Side Lobe Suppression	 Any process, action of adjustment to reduce the level of the side lobes or to reduce the degradation of the intended antenna system performance resulting from the presence of side lobes. (IEEE) Also the value of the side lobe suppression.

Silent Tuning	A feature of some ATUs. → After a first learning tuning cycle the ATU stores it's frequency-depending setting values in a built-in memory. The now available 'Silent Tuning' mode can set the ATU to the stored values without initiating a new tuning process.		
Silent Zone	see "Skip Zone"		
Skip Zone	An annular region within the transmission range of an antenna, within the signals from the transmitter are not received. The skip zone is bounded by the locus of the farthest points at which the ground wave can be received and the nearest points at which reflected sky waves can be received. Synonyms: silent zone, zone of silence. (ANS T1.523.201)		
Sky Wave	A radio wave that travels upward from the antenna. \rightarrow A sky wave may be reflected to Earth by the ionosphere. (ANS T1.523.201)		
Speed of Light (c)	The speed of an electromagnetic wave in free space, precisely 299,792,458 m/s. \rightarrow The speed of an electromagnetic wave, e.g. light, is equal to the product of wavelength and frequency.		
	$c = \lambda \cdot f$		
	\rightarrow In any physical medium, the velocity of propagation of light is lower than the speed of light in free space. Since the frequency is not changed, in any physical medium, the wavelength is also decreased. (ANS T1.523.201)		
Spillover	In a (reflector) antenna, the part of the radiated energy from the feed that does not impinge on the reflectors. (ANS T1.523.201)		
Surface Duct	An atmospheric duct for which the lower boundary is the surface bounding the atmosphere. (IEEE)		
Ψ			
TEMPEST	Telecommunications Electronics Material Protected from Emitting Spurious Transmissions 1. Short name referring to investigation, study, and control of compromising emanations from information systems (IS) equipment. (ANS T1.523.201) 2. To shield against compromising emanation. (ANS T1.523.201)		
Terminated Folded Dipole	see "TFD"		
TFD	Terminated Folded Dipole Type of an antenna built. The dipole radiators are folded backwards at its half length. Both radiator ends are terminated to 'burn' all power which was not emitted via the radiator. In either case the reflected power would negatively influence the radiation pattern of the antenna and decrease the usability.	Conto Overv	ents view
Troposphere	 The lower layers of atmosphere, in which the change of temperature with height is relatively large. It is the region where clouds form, convection is active, and mixing is continuous and more or less complete. (ANS T1.523.201) That part of the earth's atmosphere in which temperature generally decreases with altitude, clouds form, and convection is active. Experiments indicate that the troposphere occupies the space above the earth's surface up to a height ranging from 6 km (kilometers) at the poles to about 18 km at the equator. (IEEE) 	Type Index	(
V		Main	l
v Voltage Standing Wave Ratio	see "VSWR"	wien	u
VCWP	Voltage Standing Ways Patie		
vown	The VSURge Standing Wave hand In a transmission line, the ratio of maximum to minimum voltage in a standing wave pattern. \rightarrow The VSWR is a measure of impedance mismatch between the transmission line and its load. The higher the VSWR, the greater the mismatch. The minimum VSWR, i.e., that which corresponds to a perfect impedance match, is unity. (ANS T1.523.201)		
W			
Wavelength	The distance between points of corresponding phase of two consecutive cycles of a wave. \rightarrow The wavelength, λ , is related to the propagation velocity, v, and the frequency, f, by $\lambda = v$ /f. (ANS T1.523.201) \rightarrow In air the propagation velocity v is equal to c, the speed of light.		
Ζ			
Zone of Silence	see "Skip Zone"		
References:			
ANS T1.523.201: IEEE:	www.atis.org/tg2k/ Standard Dictionary of Electrical and Electronics Terms		
		177	
	HE-VHE/UHE-SHE ANTENNAS LATAIOG 2006/2007		1

Addresses

Headquarters, Plants and Subsidiaries

Headquarters

ROHDE&SCHWARZ GmbH & Co. KG Mühldorfstraße 15 · D-81671 München P.O.Box 80 14 69 · D-81614 München

Plants

ROHDE&SCHWARZ Messgerätebau GmbH Rohde-und-Schwarz-Straße 1 · D-87700 Memmingen P.O.Box 16 52 · D-87686 Memmingen

ROHDE&SCHWARZ GmbH & Co. KG Werk Teisnach Kaikenrieder Straße 27 · D-94244 Teisnach P.O.Box 11 49 · D-94240 Teisnach

ROHDE&SCHWARZ závod Vimperk, s.r.o. Location Spidrova 49 CZ-38501 Vimperk

ROHDE&SCHWARZ GmbH & Co. KG Dienstleistungszentrum Köln Graf-Zeppelin-Straße 18 · D-51147 Köln P.O.Box 98 02 60 · D-51130 Köln

Subsidiaries

ROHDE&SCHWARZ Vertriebs-GmbH Mühldorfstraße 15 · D-81671 München P.O.Box 80 14 69 · D-81614 München Hotline +49 (180) 512 42 42

ROHDE&SCHWARZ International GmbH Mühldorfstraße 15 · D-81671 München P.O.Box 80 14 60 · D-81614 München

ROHDE&SCHWARZ Europe GmbH Mühldorfstraße 15 · D-81671 München P.O.Box 80 14 29 · D-81614 München

R&S BICK Mobilfunk GmbH Fritz-Hahne-Str. 7 · D-31848 Bad Münder P.O.Box 20 02 · D-31844 Bad Münder

ROHDE&SCHWARZ FTK GmbH Wendenschloßstraße 168, Haus 28 D-12557 Berlin

ROHDE&SCHWARZ SIT GmbH Am Studio 3 D-12489 Berlin

R&S Systems GmbH Graf-Zeppelin-Straße 18 D-51147 Köln

GEDIS GmbH Sophienblatt 100 D-24114 Kiel

HAMEG Instruments GmbH Industriestraße 6 D-63533 Mainhausen Phone +49 (89) 41 29-0 Fax +49 (89) 41 29-121 64 info.rs@rohde-schwarz.com

Phone +49 (83 31) 1 08-0 +49 (83 31) 1 08-1124 info.rsmb@rohde-schwarz.com

Phone +49 (99 23) 8 50-0 Fax +49 (99 23) 8 50-174 info.rsdts@rohde-schwarz.com

> Phone +420 (388) 45 21 09 Fax +420 (388) 45 21 13

Phone +49 (22 03) 49-0 Fax +49 (22 03) 49 51-229 info.rsdc@rohde-schwarz.com service.rsdc@rohde-schwarz.com

> Phone +49 (89) 41 29-137 Fax +49 (89) 41 29-137 77 info.rsv@rohde-schwarz.com

Phone +49 (89) 41 29-129 84 Fax +49 (89) 41 29-120 50 info.rusis@rohde-schwarz.com

Phone +49 (89) 41 29-137 11 Fax +49 (89) 41 29-137 23 info.rse@rohde-schwarz.com

Phone +49 (50 42) 9 98-0 Fax +49 (50 42) 9 98-105 info.bick@rohde-schwarz.com

Phone +49 (30) 658 91-122 Fax +49 (30) 655 50-221 info.ftk@rohde-schwarz.com

Phone +49 (30) 658 84-0 Fax +49 (30) 658 84-183 info.sit@rohde-schwarz.com

Phone +49 (22 03) 49-5 23 25 Fax +49 (22 03) 49-5 23 36 info.rssys@rohde-schwarz.com

> Phone +49 (431) 600 51-0 Fax +49 (431) 600 51-11 sales@gedis-online.de

> > Phone +49 (61 82) 800-0 Fax +49 (61 82) 800-100 info@hameg.de

Locations Worldwide

Please refer to our homepage: www.rohde-schwarz.com

- Sales Locations
- Service Locations
- National Websites

Contents Overview

Type Index

Main Menu

Fax Form

Index

Туре	Designation	Page
A		
R&S®AC 004R1/R&S®AC 004R2	Omnidirectional Antennas	142
R&S®AC 008	Microwave Directional Antenna	112
R&S®AC 025DP	Dual-Polarized Reflector Antenna	126
R&S®AC 090	SHF Directional Antenna System	114
R&S®AC 120	SHF Directional Antenna System	116
R&S®AC 180	SHF Directional Antenna System	118
R&S®AC 300	SHF Directional Antenna System	120
R&S®AC 308R2	SHF Directional Antenna	122
R&S®AC 308R3	SHF/EHF Directional Antenna	124
R&S®AK 503	Mobile HF Antenna	30
R&S®AM 524	Low-Noise Active Antenna System	50
R&S®AU 900A4	Receiving Antenna System	108
F		
R&S®FT 224	VHF/UHF Diplexer	152
G		
R&S®GB 016	Control Unit	158
R&S®GB 127x New	Antenna Control Units	166
R&S®GB 130	Control Unit	160
R&S®GX 002A1	Junction Unit	154
R&S®GX 007	Junction Unit	156
Н		
R&S®HA 104/512	HF Whip Antenna	26
R&S®HA 230/403	HF Receiving Antenna	28
R&S®HD 420/R&S®HD 421	Mobile TFD Broadband Antenna	32
R&S®HE010	Active Rod Antenna	22
R&S®HE016	Active Antenna System	24
R&S®HE 055 New	Active Omnidirectional Receiving Antenna	70
R&S®HE 200	Active Directional Antenna	68
R&S®HE 202	Active Receiving Dipole	60
R&S®HE 302	Active Receiving Dipole	62
R&S®HE 314A1	Active Omnidirectional Antenna	64
R&S®HE 309	Active Vertical Dipole	58
R&S®HE 402	Active Directional Antenna	66
R&S [®] HE 500	Active Receiving Antenna	72
R&S®HF 108	ILS/VOR Test Antenna	92
R&S® HF214	Omnidirectional Antenna	52
R&S®HF902	Omnidirectional Antenna	54
R&S® HF906	Double-Ridged Waveguide Horn Antenna	144

Overview

Menu

Contents

Index

Contents Overview

Туре	Designation	Page
R&S®HK001	UHF Coaxial Dipole	94
R&S®HK012	VHF Coaxial Dipole	96
R&S®HK014	VHF/UHF Coaxial Dipole	98
R&S® HK033	VHF/UHF Coaxial Dipole	100
R&S®HK055L1	Broadband Mobile Antenna	102
R&S®HK055S1	Omnidirectional Broadband Antenna	104
R&S®HK 116	Biconical Antenna	74
R&S®HK 309	Passive Receiving Dipole	56
R&S®HK353A	VHF/UHF Omnidirectional ATC Antenna	106
R&S®HK 5000	EMS Broadband Dipole	76
R&S®HL007A2	Crossed Log-Periodic Antenna	78
R&S®HL024A1/S1	Crossed Log-Periodic Antennas	128
R&S®HL024S2	Crossed Log-Periodic Antenna	130
R&S®HL024S7	Crossed Log-Periodic Antenna	132
R&S®HL024S8	Crossed Log-Periodic Antenna	134
R&S®HL024S9	Crossed Log-Periodic Antenna	136
R&S®HL033	Log-Periodic Broadband Antenna	80
R&S®HL040	Log-Periodic Broadband Antenna	82
R&S®HL 046	EMS Antenna	84
R&S®HL046E	High Gain Log-Periodic Antenna	86
R&S®HL050/R&S®HL050S1	Log-Periodic Antennas	138
R&S®HL050S7	Log-Periodic Directional Antenna with Preamplifier	140
R&S®HL210A3	Log-Periodic HF Antenna	44
R&S®HL223	Log-Periodic Antenna	88
R&S®HL410A3	Log-Periodic HF Antenna	46
R&S®HL451	Log-Periodic HF Antenna	40
R&S®HL471	Log-Periodic HF Antenna	42
R&S®HL562	ULTRALOG	90
R&S®HM 020	Triple-Loop Antenna	18
R&S®HM 525	Active H-Field Measurement Antenna	20
R&S®HX 002	1 kW HF Dipole	34
R&S [®] HX 002A1	150 W HF Dipole	36
R&S [®] HX 002M1	150 W HF Dipole	38
I		
R&S®IN 115	Power Supply Unit	148
R&S®IN 500	Bias Unit	150
R		
R&S®RD 130	Antenna Rotator	162
Z		
R&S®ZS 129x New	Switch Units	164